Document Type
Article
Publication Date
9-2007
Keywords
Ribosome, Chemical footprinting, Translocation, Elongation factor G, Hybrid states
Abstract
Following peptide bond formation, transfer RNAs (tRNAs) and messenger RNA (mRNA) are translocated through the ribosome, a process catalyzed by elongation factor EF-G. Here, we have used a combination of chemical footprinting, peptidyl transferase activity assays, and mRNA toeprinting to monitor the effects of EF-G on the positions of tRNA and mRNA relative to the A, P, and E sites of the ribosome in the presence of GTP, GDP, GDPNP, and fusidic acid. Chemical footprinting experiments show that binding of EF-G in the presence of the non-hydrolyzable GTP analog GDPNP or GDP·fusidic acid induces movement of a deacylated tRNA from the classical P/P state to the hybrid P/E state. Furthermore, stabilization of the hybrid P/E state by EF-G compromises P-site codon–anticodon interaction, causing frame-shifting. A deacylated tRNA bound to the P site and a peptidyl- tRNA in the A site are completely translocated to the E and P sites, respectively, in the presence of EF-G with GTP or GDPNP but not with EF-G·GDP. Unexpectedly, translocation with EF-G·GTP leads to dissociation of deacylated tRNA from the E site, while tRNA remains bound in the presence of EF-G·GDPNP, suggesting that dissociation of tRNA from the E site is promoted by GTP hydrolysis and/or EF-G release. Our results show that binding of EF-G in the presence of GDPNP or GDP·fusidic acid stabilizes the ribosomal intermediate hybrid state, but that complete translocation is supported only by EF-G·GTP or EF-G·GDPNP.
Publication Title
RNA
Volume
13
Issue
9
First Page
1473
Last Page
1482
Required Publisher's Statement
Copyright © 2007 RNA Society
DOI:10.1261/rna.601507
Recommended Citation
Spiegel, P. Clint; Ermolenko, Dmitri N.; and Noller, Harry F., "Elongation Factor G Stabilizes the Hybrid-State Conformation of the 70S Ribosome" (2007). Chemistry Faculty and Staff Publications. 5.
https://cedar.wwu.edu/chemistry_facpubs/5
Subjects - Topical (LCSH)
Ribosomes; Peptides--Synthesis; Transfer RNA; Messenger RNA
Genre/Form
articles
Type
Text
Language
English
Format
application/pdf