College Affiliation

College of Science and Engineering

Document Type

Research Paper

Publication Date

2008

Department or Program Affiliation

Computer Science Department

Keywords

Nash equilibrium, game theory, two-player games, zero-sum games

Abstract

In many games, it is desirable to find strategies for all players that simultaneously maximize their respective worst-case payoffs. A set of strategies satisfying this criterion is called a Nash equilibrium. Because the search space of possible strategies grows rapidly as the size of the game increases, specialized algorithms are needed to efficiently find Nash equilibria. In this paper, current equilibrium-finding methods are presented and key areas for future work are identified. The first algorithm, due to Koller, Megiddo, and von Stengel, computes standard Nash equilibria in two-player, zero-sum games. The second algorithm, due to Miltersen and Sorensen, extends the method of Koller, Megiddo, and von Stengel to find proper equilibria. Both algorithms run in polynomial time in the worst case. The hardness of the equilibrium-finding problem for general-sum games highlights the need for new approximation methods.

Subject – LCSH

Game theory, Noncooperative games (Mathematics), Equilibrium (Economics)

Publisher

Western Washington University

Genre/Form

term papers

Type

Text

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.

Language

English

Format

application/pdf

COinS