Document Type

Article

Publication Date

1-2019

Keywords

Water quality, Environmental DNA (eDNA), Bayesian network, Ecological risk assessment

Abstract

Predictive modeling can inform natural resource management by representing stressor-response pathways in a logical way and quantifying the effects on selected endpoints. This study demonstrates a risk assessment model using the Bayesian network-relative risk model (BNRRM) approach to predict water quality and; for the first time, eukaryote environmental DNA (eDNA) data as a measure of benthic community structure. Environmental DNA sampling is a technique for biodiversity measurements that involves extracting DNA from environmental samples, amplicon sequencing a targeted gene, in this case the 18s rDNA gene which targets eukaryotes, and matching the sequences to organisms. Using a network of probability distributions, the BN-RRM model predicts risk to water quality objectives and the relative richness of benthic taxa groups in the Noosa, Pine, and Logan estuaries in South East Queensland (SEQ), Australia. The model predicts Dissolved Oxygen more accurately than the Chlorophyll-a water quality endpoint, and photosynthesizing benthos more accurately than heterotrophs. Results of BN-RRM modeling given current inputs indicate that the water quality and benthic assemblages of the Noosa are relatively homogenous across all sub risk regions, and that the Noosa has a 73 – 92 percent probability of achieving water quality objectives, indicating a low relative risk. Conversely, the Middle Logan, Middle Pine, and Lower Pine regions are much less likely to meet objectives (15 – 55 percent probability), indicating a relatively higher risk to water quality in those regions. The benthic community richness patterns associated with risk in the Noosa are high Diatom relative richness and low Green Algae relative richness. The only benthic pattern consistently associated with the relatively higher risk to water quality is high richness of fungi species. The BN-RRM model provides a basis for future predictions and adaptive management at the direction of resource managers.

Publication Title

Integrated Environmental Assessment and Management

Volume

15

Issue

1

First Page

93

Last Page

111

DOI

https://doi.org/10.1002/ieam.4091

Required Publisher's Statement

The publisher of Integrated Environmental Assessment and Management, allows pre-prints to be published on institutional repositiories.

Access to the publisher's version of the article can be accessed through the DOI: https://doi.org/10.1002/ieam.4091

© 2018 SETAC

Subjects - Topical (LCSH)

Estuarine health--Effect of water quality on--Monitoring--Australia--Queensland, South East; Benthos--Effect of water quality on--Monitoring--Australia--Queensland, South East; Environmental risk assessment--Australia--Queensland, South East; Bayesian statistical decision theory

Geographic Coverage

Queensland, South East

Genre/Form

articles

Type

Text

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.

Language

English

Format

application/pdf

Share

COinS