Document Type

Publication

Publication Date

Winter 2021

Keywords

toxicology, IETC Climate Change

Abstract

In 2012, a regional risk assessment was published that applied Bayesian networks (BN) to the structure of the relative risk model. The original structure of the relative risk model (RRM) was published in the late 1990s and developed during the next decade. The RRM coupled with a Monte Carlo analysis was applied to calculating risk to a number of sites and a variety of questions. The sites included watersheds, terrestrial systems, and marine environments and included stressors such as nonindigenous species, effluents, pesticides, nutrients, and management options. However, it became apparent that there were limits to the original approach. In 2009, the relative risk model was transitioned into the structure of a BN. Bayesian networks had several clear advantages. First, BNs innately incorporated categories and, as in the case of the relative risk model, ranks to describe systems. Second, interactions between multiple stressors can be combined using several pathways and the conditional probability tables (CPT) to calculate outcomes. Entropy analysis was the method used to document model sensitivity. As with the RRM, the method has now been applied to a wide series of sites and questions, from forestry management, to invasive species, to disease, the interaction of ecological and human health endpoints, the flows of large rivers, and now the efficacy and risks of synthetic biology. The application of both methods have pointed to the incompleteness of the fields of environmental chemistry, toxicology, and risk assessment. The low frequency of exposure‐ response experiments and proper analysis have limited the available outputs for building appropriate CPTs. Interactions between multiple chemicals, landscape characteristics, population dynamics and community structure have been poorly characterized even for critical environments. A better strategy might have been to first look at the requirements of modern risk assessment approaches and then set research priorities. Integr Environ Assess Manag 2021;17:79–94. © 2020 SETAC

Publication Title

Integr Environ Assess Manag

Volume

2021

Issue

17

First Page

79

Last Page

94

DOI

10.1002/ieam.4351

Subjects - Topical (LCSH)

Toxicological chemistry; Biochemical toxicology; Bayesian statistical decision theory; Systems biology--Methodology; Bioinformatics

Genre/Form

articles

Type

Text

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.

Language

English

Format

application/pdf

COinS