Document Type
Article
Publication Date
3-1994
Keywords
Convex body, Section, Busemann-Petty problem, Intersection body
Abstract
It is proved that the answer to the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies in d-dimensional Euclidean space Ed is negative for a given d if and only if certain centrally symmetric convex bodies exist in Ed which are not intersection bodies. It is also shown that a cylinder in Ed is an intersection body if and only if d ≤ 4, and that suitably smooth axis-convex bodies of revolution are intersection bodies when d ≤ 4. These results show that the Busemann-Petty problem has a negative answer for d ≥ 5 and a positive answer for d = 3 and d = 4 when the body with smaller sections is a body of revolution.
Publication Title
Transactions of the American Mathematical Society
Volume
342
Issue
1
First Page
435
Last Page
445
Required Publisher's Statement
First published in Transactions of the American Mathematical Society in Volume 342, Number 1, March 1994, published by the American Mathematical Society
Recommended Citation
Gardner, Richard J., "Intersection Bodies and the Busemann-Petty Problem" (1994). Mathematics Faculty Publications. 24.
https://cedar.wwu.edu/math_facpubs/24
Subjects - Topical (LCSH)
Convex bodies; Intersection theory (Mathematics)
Genre/Form
articles
Type
Text
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf