Document Type

Article

Publication Date

2013

Keywords

geometric models for secrecy in wireless networks, Eavesdroppers, Poisson point processes

Abstract

Motivated by information-theoretic secrecy, geometric models for secrecy in wireless networks have begun to receive increased attention. The general question is how the presence of eavesdroppers affects the properties and performance of the network. Previously, the focus has been mostly on connectivity. Here we study the impact of eavesdroppers on the coverage of a network of base stations. The problem we address is the following. Let base stations and eavesdroppers be distributed as stationary Poisson point processes in a disk of area n. If the coverage of each base station is limited by the distance to the nearest eavesdropper, what is the maximum density of eavesdroppers that can be accommodated while still achieving full coverage, asymptotically as n→∞?

Publication Title

Internet Mathematics

Volume

9

Issue

2-3

First Page

199

Last Page

216

DOI

http://dx.doi.org/10.1080/15427951.2012.673333

Required Publisher's Statement

Published by Taylor & Francis Group

DOI: 10.1080/15427951.2012.673333

Link to publisher version: http://www.tandfonline.com/doi/abs/10.1080/15427951.2012.673333

Subjects - Topical (LCSH)

Wireless sensor networks--Security measures; Security systems--Mathematical models; Poisson processes

Genre/Form

articles

Type

Text

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.

Language

English

Format

application/pdf

Included in

Mathematics Commons

COinS