Document Type
Conference Proceeding
Publication Date
2010
Keywords
Separable parameterized equations, rank deficiency, Golub-Pereyra variable projection method, bordered matrix, singular value decomposition, Newton's method
Abstract
Many applications give rise to separable parameterized equations of the form A(y,µ)z + b(y, µ) = 0, where y ∈ Rn, z ∈ RN and the parameter µ ∈ R; here A(y,µ) is an (N + n) × N matrix and b(y, µ) ∈ RN +n. Under the assumption that A(y, µ) has full rank we showed in [21] that bifurcation points can be located by solving a reduced equation of the form f (y, µ) = 0. In this paper we extend that method to the case that A(y, µ) has rank deficiency one at the bifurcation point. At such a point the solution curve (y, µ, z) branches into infinitely many additional solutions,which form a straight line. A numerical method for reducing the problem to a smaller space and locating such a bifurcation point is given. Applications to equilibrium solutions of nonlinear ordinary equations and solutions of discretized partial differential equations are provided.
Publication Title
Electronic Journal of Differential Equations
Volume
19
First Page
254
Last Page
255
Required Publisher's Statement
Published by the Department of Mathematics, Texas State University
Recommended Citation
Ypma, Tjalling and Shen, Yun-Qiu, "Bifurcation of Solutions of Separable Parameterized Equations into Lines" (2010). Mathematics Faculty Publications. 95.
https://cedar.wwu.edu/math_facpubs/95
Subjects - Topical (LCSH)
Seperable algebras; Bifurcation theory
Genre/Form
conference proceedings
Type
Text
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf
Comments
Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations
This is an open access journal.