Investigation of the evolution of bacterial sortase and PDZ domain selectivity determinants
Research Mentor(s)
Amacher, Jeanine
Description
Our research group is broadly interested in peptide-binding domains and how only a small number of amino acids are recognized in a given interaction. Specifically, we are focused on the PDZ domain, which is important in signaling and trafficking pathways in the cell. There are over 200 PDZ domains in the human proteome, making it the largest family of peptide-binding domains. Defined motifs include only a couple of positions along the peptide-binding cleft, and do not accurately define the overlapping yet distinct preferences among family members. Our research group will work to understand the selectivity determinants of PDZ domains throughout evolution. We will use biochemistry and structural biology to investigate PDZ domains from extant species, as well as by using ancestral protein reconstruction. We are also interested in the selectivity determinants of other peptide-binding domains, e.g., the SH2 domain, which binds phosphorylated tyrosine-containing peptides.
Document Type
Event
Start Date
May 2018
End Date
May 2018
Department
Chemistry
Genre/Form
student projects, posters
Subjects – Topical (LCSH)
Cellular signal transduction; Protein-protein interactions
Type
Image
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf
Investigation of the evolution of bacterial sortase and PDZ domain selectivity determinants
Our research group is broadly interested in peptide-binding domains and how only a small number of amino acids are recognized in a given interaction. Specifically, we are focused on the PDZ domain, which is important in signaling and trafficking pathways in the cell. There are over 200 PDZ domains in the human proteome, making it the largest family of peptide-binding domains. Defined motifs include only a couple of positions along the peptide-binding cleft, and do not accurately define the overlapping yet distinct preferences among family members. Our research group will work to understand the selectivity determinants of PDZ domains throughout evolution. We will use biochemistry and structural biology to investigate PDZ domains from extant species, as well as by using ancestral protein reconstruction. We are also interested in the selectivity determinants of other peptide-binding domains, e.g., the SH2 domain, which binds phosphorylated tyrosine-containing peptides.