Event Title

Patterns and relationships of lower trophic levels of Puget Sound's pelagic food web

Presentation Abstract

Unicellular microscopic organisms are the interface between the marine chemical domain and the pelagic food web. Phytoplankton, bacteria, and archea transfer molecules to and from food webs, but can be limited by physical parameters such as insolation and temperature. A geographically extensive survey of Puget Sound in 2011 addressed patterns and relationships of the lower trophic levels of the pelagic food web. Chlorophyll a and fluorescence (primary production proxies) were positively associated with bacterial biomass and heterotrophic production, while all four of these biotic measures displayed strong inverse relationships with dissolved nutrients. These observations coupled with nitrate stable isotope results suggest microbes were effectively regulating inorganic nitrogen and phosphorous concentrations. The abundance of picophytoplankton was positively associated with cyanobacterial (Synecococcus spp.) abundance, the abundance of low nucleic acid bacterioplankton, silicic acid concentration, and pH across the six oceanographic basins surveyed, indicating coordinated fluctuations of microbial subsets and abiotic conditions. The structures of bacterial communities, which were characterized by DNA profiling, displayed convergent patterns between adjacent oceanographic basins over time, with highest similarities occurring in the fall. Hood Canal, however, was distinct from other basins in bacterial community structure and in concentration of dissolved inorganic nitrogen. Anthropogenic influences were measured by detection of human-sourced or bovine-sourced fecal indicators, which were observed most frequently at sites near urban centers or in basins with higher densities of dairy operations, respectively. These observations highlight the value of integrated measurements in evaluating lower trophic levels of pelagic food webs.

Session Title

Session S-01D: Pelagic Ecology in the Salish Sea I

Conference Track

Species and Food Webs

Conference Name

Salish Sea Ecosystem Conference (2014 : Seattle, Wash.)

Document Type

Event

Start Date

30-4-2014 10:30 AM

End Date

30-4-2014 12:00 PM

Location

Room 611-612

Genre/Form

conference proceedings; presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Pelagic fishes--Washington (State)--Puget Sound; Food chains (Ecology)--Washington (State)--Puget Sound

Geographic Coverage

Salish Sea (B.C. and Wash.); Puget Sound (Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

This document is currently not available here.

COinS
 
Apr 30th, 10:30 AM Apr 30th, 12:00 PM

Patterns and relationships of lower trophic levels of Puget Sound's pelagic food web

Room 611-612

Unicellular microscopic organisms are the interface between the marine chemical domain and the pelagic food web. Phytoplankton, bacteria, and archea transfer molecules to and from food webs, but can be limited by physical parameters such as insolation and temperature. A geographically extensive survey of Puget Sound in 2011 addressed patterns and relationships of the lower trophic levels of the pelagic food web. Chlorophyll a and fluorescence (primary production proxies) were positively associated with bacterial biomass and heterotrophic production, while all four of these biotic measures displayed strong inverse relationships with dissolved nutrients. These observations coupled with nitrate stable isotope results suggest microbes were effectively regulating inorganic nitrogen and phosphorous concentrations. The abundance of picophytoplankton was positively associated with cyanobacterial (Synecococcus spp.) abundance, the abundance of low nucleic acid bacterioplankton, silicic acid concentration, and pH across the six oceanographic basins surveyed, indicating coordinated fluctuations of microbial subsets and abiotic conditions. The structures of bacterial communities, which were characterized by DNA profiling, displayed convergent patterns between adjacent oceanographic basins over time, with highest similarities occurring in the fall. Hood Canal, however, was distinct from other basins in bacterial community structure and in concentration of dissolved inorganic nitrogen. Anthropogenic influences were measured by detection of human-sourced or bovine-sourced fecal indicators, which were observed most frequently at sites near urban centers or in basins with higher densities of dairy operations, respectively. These observations highlight the value of integrated measurements in evaluating lower trophic levels of pelagic food webs.