A multispecies assessment of climate change threats to salmonids across their life cycle

Presentation Abstract

During their life cycle, salmonids experience conditions in freshwater, estuarine, and marine habitats, exposing them to numerous climate change threats. The extent to which different species utilize different habitat types and habitat-specific climate change risks should result in differential overall vulnerability of these species to climate change, but most previous vulnerability assessments have focused only on particular life stages for particular species, hampering our ability to protect, restore stocks and their habitats to maximize species portfolios in river systems. We performed a life cycle-based risk assessment of climate change threats for nine species of salmonids (species within Oncorhynchus, Salvelinus, and Prosopium genera) inhabiting the Skagit River system, which is vulnerable to the panoply of climate impacts forecasted for the Pacific Northwest. The risk assessment integrated both species-specific intensity and exposure and incorporated uncertainty. We found that while climate change threats existed across all habitats inhabited by these species, the greatest threats to all species were associated with projected changes in the extremes of freshwater flow (high incubation flows, low summer flows). These results suggest that restoration strategies targeting restoration of floodplain function will be most effective for reducing the most serious threats for a broad portfolio of salmonids inhabiting the Skagit River, although other climate adaptation strategies may provide additional benefits to other suites of species.

Session Title

Session S-07H: Assessing, Planning and Adapting to Climate Change Impacts in Skagit River Watershed

Conference Track

Shorelines

Conference Name

Salish Sea Ecosystem Conference (2014 : Seattle, Wash.)

Document Type

Event

Start Date

1-5-2014 3:30 PM

End Date

1-5-2014 5:00 PM

Location

Room 607

Genre/Form

conference proceedings; presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Salmonidae--Climatic factors--Skagit River (B.C. and Wash.)

Geographic Coverage

Salish Sea (B.C. and Wash.); Skagit River (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

This document is currently not available here.

Share

COinS
 
May 1st, 3:30 PM May 1st, 5:00 PM

A multispecies assessment of climate change threats to salmonids across their life cycle

Room 607

During their life cycle, salmonids experience conditions in freshwater, estuarine, and marine habitats, exposing them to numerous climate change threats. The extent to which different species utilize different habitat types and habitat-specific climate change risks should result in differential overall vulnerability of these species to climate change, but most previous vulnerability assessments have focused only on particular life stages for particular species, hampering our ability to protect, restore stocks and their habitats to maximize species portfolios in river systems. We performed a life cycle-based risk assessment of climate change threats for nine species of salmonids (species within Oncorhynchus, Salvelinus, and Prosopium genera) inhabiting the Skagit River system, which is vulnerable to the panoply of climate impacts forecasted for the Pacific Northwest. The risk assessment integrated both species-specific intensity and exposure and incorporated uncertainty. We found that while climate change threats existed across all habitats inhabited by these species, the greatest threats to all species were associated with projected changes in the extremes of freshwater flow (high incubation flows, low summer flows). These results suggest that restoration strategies targeting restoration of floodplain function will be most effective for reducing the most serious threats for a broad portfolio of salmonids inhabiting the Skagit River, although other climate adaptation strategies may provide additional benefits to other suites of species.