A geospatial approach to prioritizing drift cells for strategic protection, restoration, and enhancement
Presentation Abstract
The Washington Department of Ecology Coastal Monitoring & Analysis Program has developed an objective, systematic, and data-based approach to identifying and prioritizing intact shorelines (drift cells) that offer a high potential for learning, protection, and restoration, combined with a convergence of stakeholder interest and institutional capacity for collaborative nearshore ecosystem management. The approach and current criteria used identifies highest-priority drift cells with feeder bluffs that actively provide sediment to the nearshore and sustain an unusually high level of ecosystem services. The approach is intended to serve as a model for determining where in the landscape to strategically invest capital and social inputs for protection and restoration efforts. Spatial analysis of widely available physical, ecological, and social data and the use of multiple criteria, metrics, and their relative weighting provide initial assessment of high-value locations, while site monitoring, characterization, and geomorphic change analysis can provide refined information to guide the specific approach to ecosystem management for each site.
With over 1000 drift cells in Puget Sound, the current project identified 17 ‘top-tier’ and 24 ‘second-tier’ drift cells as well as 105 ‘third-tier’ drift cells that represent 163, 143, and 406 km of shoreline, respectively. The drift cells within the ‘top-tier’ category are predominantly located in north Puget Sound; only one site is located in south central or south Puget Sound sub-basins, whereas 8 of the 24 ‘second-tier’ sites are located in these southern basins. The current criteria used emphasizes drift cells that offer the greatest potential return on ecosystem services per quantity of capital and social investment, thus there is an inherent bias toward projects involving protection over restoration. However, given the anthropogenic overlay and influence on the landscape, opportunities for restoration are essentially ubiquitous.
Session Title
Integrating Science with Landowner Outreach to Increase Coastal Resiliency
Conference Track
Shorelines
Conference Name
Salish Sea Ecosystem Conference (2016 : Vancouver, B.C.)
Document Type
Event
Location
2016SSEC
Type of Presentation
Oral
Genre/Form
presentations (communicative events)
Contributing Repository
Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.
Subjects – Topical (LCSH)
Shorelines--Washington (State)--Puget Sound; Restoration monitoring (Ecology)--Washington (State)--Puget Sound
Subjects – Names (LCNAF)
Washington (State). Department of Ecology
Geographic Coverage
Puget Sound (Wash.); Salish Sea (B.C. and Wash.)
Rights
This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.
Type
Text
Language
English
Format
application/pdf
A geospatial approach to prioritizing drift cells for strategic protection, restoration, and enhancement
2016SSEC
The Washington Department of Ecology Coastal Monitoring & Analysis Program has developed an objective, systematic, and data-based approach to identifying and prioritizing intact shorelines (drift cells) that offer a high potential for learning, protection, and restoration, combined with a convergence of stakeholder interest and institutional capacity for collaborative nearshore ecosystem management. The approach and current criteria used identifies highest-priority drift cells with feeder bluffs that actively provide sediment to the nearshore and sustain an unusually high level of ecosystem services. The approach is intended to serve as a model for determining where in the landscape to strategically invest capital and social inputs for protection and restoration efforts. Spatial analysis of widely available physical, ecological, and social data and the use of multiple criteria, metrics, and their relative weighting provide initial assessment of high-value locations, while site monitoring, characterization, and geomorphic change analysis can provide refined information to guide the specific approach to ecosystem management for each site.
With over 1000 drift cells in Puget Sound, the current project identified 17 ‘top-tier’ and 24 ‘second-tier’ drift cells as well as 105 ‘third-tier’ drift cells that represent 163, 143, and 406 km of shoreline, respectively. The drift cells within the ‘top-tier’ category are predominantly located in north Puget Sound; only one site is located in south central or south Puget Sound sub-basins, whereas 8 of the 24 ‘second-tier’ sites are located in these southern basins. The current criteria used emphasizes drift cells that offer the greatest potential return on ecosystem services per quantity of capital and social investment, thus there is an inherent bias toward projects involving protection over restoration. However, given the anthropogenic overlay and influence on the landscape, opportunities for restoration are essentially ubiquitous.