Presentation Abstract
Green stormwater infrastructure (GSI) includes an evolving set of technologies to mitigate the physical and chemical habitat degradation that results from urban runoff entering aquatic ecosystems. Bioretention is a common GSI approach, used, for example in rain gardens, to infiltrate stormwater runoff into soils prior to or instead of discharging into a water body. Initial research has shown that bioretention is biologically effective for preventing most toxicity from urban runoff exposure, but initial trials used fresh bioretention soil media (BSM) with less than 5 repeated treatments. Does bioretention continue to be biologically effective at preventing toxicity over more treatment events? In two concurrent years, coho embryos were fertilized and reared in heath stacks with flow-through well water until hatch. Episodically through development, embryos were exposed to one of several recirculating treatments for 24-48 h; well water, highway runoff, or highway runoff filtered through bioretention. Each filtration event used the same BSM for a total of 25 events across two years of study. Morphometric and molecular measurements of sublethal toxicity were assessed weekly during the final 7 weeks of each year of the study and survival was assessed by the end of each study. Chemical and biological effectiveness of bioretention filtration will be discussed in the context of this study.
Session Title
The Performance of Low Impact Development Applied Across Land Use Scales Using Flow Control, Water Quality and Biological Metrics
Keywords
Green stormwater infrastructue, GSI, Coho embryos
Conference Track
SSE12: Land-Use, Growth, and Development
Conference Name
Salish Sea Ecosystem Conference (2018 : Seattle, Wash.)
Document Type
Event
SSEC Identifier
SSE12-241
Start Date
4-4-2018 4:30 PM
End Date
4-4-2018 4:45 PM
Type of Presentation
Oral
Genre/Form
presentations (communicative events)
Contributing Repository
Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.
Subjects – Topical (LCSH)
Runoff--Toxicology--Salish Sea (B.C. and Wash.); Rain gardens--Salish Sea (B.C. and Wash.); Coho salmon--Effect of contaminated sediments on--Salish Sea (B.C. and Wash.)
Geographic Coverage
Salish Sea (B.C. and Wash.)
Rights
This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.
Type
Text
Language
English
Format
application/pdf
Included in
Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, Terrestrial and Aquatic Ecology Commons
The chemical and biological effectiveness of bioretention for preventing sublethal and lethal toxicity in coho embryos exposed episodically to urban stormwater runoff during development
Green stormwater infrastructure (GSI) includes an evolving set of technologies to mitigate the physical and chemical habitat degradation that results from urban runoff entering aquatic ecosystems. Bioretention is a common GSI approach, used, for example in rain gardens, to infiltrate stormwater runoff into soils prior to or instead of discharging into a water body. Initial research has shown that bioretention is biologically effective for preventing most toxicity from urban runoff exposure, but initial trials used fresh bioretention soil media (BSM) with less than 5 repeated treatments. Does bioretention continue to be biologically effective at preventing toxicity over more treatment events? In two concurrent years, coho embryos were fertilized and reared in heath stacks with flow-through well water until hatch. Episodically through development, embryos were exposed to one of several recirculating treatments for 24-48 h; well water, highway runoff, or highway runoff filtered through bioretention. Each filtration event used the same BSM for a total of 25 events across two years of study. Morphometric and molecular measurements of sublethal toxicity were assessed weekly during the final 7 weeks of each year of the study and survival was assessed by the end of each study. Chemical and biological effectiveness of bioretention filtration will be discussed in the context of this study.