Presentation Abstract

Eelgrass (Zostera marina) is one of 25 Vital Signs to track the health of Puget Sound and restoration of this critical nearshore habitat is part of the overall regional recovery strategy. Eelgrass restoration will provide a multitude of benefits, ranging from habitat for species to ameliorating the effects of climate change. Since 2013, the Washington State Department of Natural Resources has led regional evaluation of potential eelgrass restoration sites and transplanting in Washington State. Through collaborations we have developed and tested strategies to enhance transplant success and restore natural processes. We developed an eelgrass transplant suitability model to identify potential restoration sites using key variables essential for seagrass production and long-term resilience in a changing environment. Eelgrass was planted at five sites for initial model verification with an additional 81 test sites planted between 2013 and 2017 to identify areas suitable for large scale restoration. Eelgrass test transplant results varied and 15 sites with the highest success were selected for large-scale transplantation. A comparison of standard transplant methods was performed and preliminary results suggest that proper method selection plays an important role in transplant success. Long-term monitoring is scheduled with an emphasis on the success of specific donor stocks, the recovery of donor sites, and the effect seagrass restoration has on water chemistry. The restoration process has endured challenges that ranged from permitting issues to anthropogenic and environmental stressors. However, issue specific solutions and adaptive management allowed the restoration process to progress and contribute valuable information towards strategies to recover this valuable habitat in the region.

Session Title

Seagrass Cross-border Connections: Status and Trends

Keywords

Restoration, Transplant success, Eelgrass

Conference Track

SSE4: Ecosystem Management, Policy, and Protection

Conference Name

Salish Sea Ecosystem Conference (2018 : Seattle, Wash.)

Document Type

Event

SSEC Identifier

SSE4-541

Start Date

5-4-2018 11:00 AM

End Date

5-4-2018 11:15 AM

Type of Presentation

Oral

Genre/Form

presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Zostera marina--Transplanting--Washington (State)--Puget Sound; Estuarine restoration--Washington (State)--Puget Sound

Subjects – Names (LCNAF)

Washington (State). Department of Natural Resources

Geographic Coverage

Puget Sound (Wash.); Salish Sea (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

Share

COinS
 
Apr 5th, 11:00 AM Apr 5th, 11:15 AM

Eelgrass (Zostera marina) restoration in Puget Sound: restoration tools, successes and challenges

Eelgrass (Zostera marina) is one of 25 Vital Signs to track the health of Puget Sound and restoration of this critical nearshore habitat is part of the overall regional recovery strategy. Eelgrass restoration will provide a multitude of benefits, ranging from habitat for species to ameliorating the effects of climate change. Since 2013, the Washington State Department of Natural Resources has led regional evaluation of potential eelgrass restoration sites and transplanting in Washington State. Through collaborations we have developed and tested strategies to enhance transplant success and restore natural processes. We developed an eelgrass transplant suitability model to identify potential restoration sites using key variables essential for seagrass production and long-term resilience in a changing environment. Eelgrass was planted at five sites for initial model verification with an additional 81 test sites planted between 2013 and 2017 to identify areas suitable for large scale restoration. Eelgrass test transplant results varied and 15 sites with the highest success were selected for large-scale transplantation. A comparison of standard transplant methods was performed and preliminary results suggest that proper method selection plays an important role in transplant success. Long-term monitoring is scheduled with an emphasis on the success of specific donor stocks, the recovery of donor sites, and the effect seagrass restoration has on water chemistry. The restoration process has endured challenges that ranged from permitting issues to anthropogenic and environmental stressors. However, issue specific solutions and adaptive management allowed the restoration process to progress and contribute valuable information towards strategies to recover this valuable habitat in the region.