Presentation Abstract
Juvenile Chinook salmon are well known for utilizing estuarine habitats within the tidal delta for rearing during outmigration. Several studies have linked population responses to availability of estuary habitat, and support the hypothesis that estuarine habitats are vital rearing areas for juvenile Chinook salmon. However, these coarse-scale studies provide little insight on how specific estuarine habitats contribute to rearing potential for salmon. We integrate long-term monitoring data from four estuaries of Puget Sound (Nooksack, Skagit, Snohomish, and Nisqually) to examine whether 1) Chinook populations in these rivers are limited by restricted estuary habitat, 2) hatchery releases can influence density dependent relationships in estuaries, 3) highly connected sites support higher densities of salmon, and 4) different habitat types support higher rearing densities of Chinook salmon. Across sampling locations within estuary systems, average annual rearing densities varied over four orders of magnitude. We found strong support for density dependence, habitat type, landscape connectivity, and hatchery release numbers influencing rearing densities, although all factors were not necessarily as important within each system, and effects of habitat type were particularly variable. Further work using bioenergetics models suggest that habitat-dependent variation in temperature can strongly influence growth in different systems, and that multiple habitats are likely important to provide suitable habitat for extended estuary rearing. These analyses are useful for determining the relative contribution of connectivity, cohort population size, and local habitat conditions for growth potential of Chinook salmon using estuarine habitats at early life stages, and shed light on likely impacts of climate change upon rearing conditions.
Session Title
Response of Water-Column Processes and Pelagic Organisms to Long-term Change
Keywords
Chinook salmon, Estuary, Density dependence
Conference Track
SSE16: Long-Term Monitoring of Salish Sea Ecosystems
Conference Name
Salish Sea Ecosystem Conference (2018 : Seattle, Wash.)
Document Type
Event
SSEC Identifier
SSE16-534
Start Date
5-4-2018 4:45 PM
End Date
5-4-2018 5:00 PM
Type of Presentation
Oral
Genre/Form
conference proceedings; presentations (communicative events)
Contributing Repository
Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.
Subjects – Topical (LCSH)
Chinook salmon--Migration--Washington (State)--Puget Sound; Fishes--Habitat--Effect of temperatre on--Washington (State)--Puget Sound; Estuarine ecology--Research--Washington (State)--Puget Sound; Fish populations--Washington (State)--Puget Sound
Geographic Coverage
Salish Sea (B.C. and Wash.)
Rights
This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.
Type
Text
Language
English
Format
application/pdf
Included in
Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, Terrestrial and Aquatic Ecology Commons
Density-dependent and landscape effects upon estuary rearing in Chinook salmon: insights from long-term monitoring in four Puget Sound estuaries
Juvenile Chinook salmon are well known for utilizing estuarine habitats within the tidal delta for rearing during outmigration. Several studies have linked population responses to availability of estuary habitat, and support the hypothesis that estuarine habitats are vital rearing areas for juvenile Chinook salmon. However, these coarse-scale studies provide little insight on how specific estuarine habitats contribute to rearing potential for salmon. We integrate long-term monitoring data from four estuaries of Puget Sound (Nooksack, Skagit, Snohomish, and Nisqually) to examine whether 1) Chinook populations in these rivers are limited by restricted estuary habitat, 2) hatchery releases can influence density dependent relationships in estuaries, 3) highly connected sites support higher densities of salmon, and 4) different habitat types support higher rearing densities of Chinook salmon. Across sampling locations within estuary systems, average annual rearing densities varied over four orders of magnitude. We found strong support for density dependence, habitat type, landscape connectivity, and hatchery release numbers influencing rearing densities, although all factors were not necessarily as important within each system, and effects of habitat type were particularly variable. Further work using bioenergetics models suggest that habitat-dependent variation in temperature can strongly influence growth in different systems, and that multiple habitats are likely important to provide suitable habitat for extended estuary rearing. These analyses are useful for determining the relative contribution of connectivity, cohort population size, and local habitat conditions for growth potential of Chinook salmon using estuarine habitats at early life stages, and shed light on likely impacts of climate change upon rearing conditions.