Multi-sensor archival tags on southern resident killer whales reveal patterns in kinematic behavior during subsurface foraging in the Salish Sea
Presentation Abstract
Accumulating evidence suggests that Endangered southern resident killer whales may not be meeting their energetic requirements for body maintenance and growth, which can negatively affect survival and reproduction. A variety of factors are likely contributing to the decline in body condition and population size of southern residents, including disturbance from vessels and noise, which is known to interfere with foraging behavior. Between 2010-2014 we deployed 28 suction cup-attached digital acoustic recording tags (“DTAGs”) equipped with hydrophones, pressure sensors, and tri-axial accelerometers and magnetometers on southern residents as part of a study to investigate how underwater vessel noise impacts foraging behavior. Here, we present a fine-scale analysis of the kinematic behavior associated with subsurface foraging, which is a necessary precursor to understanding how vessel noise may be impairing successful foraging. First, we describe a method to identify subsurface prey capture events using kinematic data, and characterize the kinematic behavior associated with prey capture dives. Next, we show how foraging behavior differs between sexes. Finally, we discuss next steps to relate these findings to vessel noise impacts and implications for population recovery.
Session Title
Collaborating to Reduce Impacts of Underwater Noise from Vessels on SKRW: Biological Impacts of Underwater Noise from Vessels
Conference Track
SSE14: Vessel Traffic: Risks and Impacts
Conference Name
Salish Sea Ecosystem Conference (2018 : Seattle, Wash.)
Document Type
Event
SSEC Identifier
SSE14-526
Start Date
6-4-2018 9:30 AM
End Date
6-4-2018 9:45 AM
Type of Presentation
Oral
Genre/Form
conference proceedings; presentations (communicative events)
Contributing Repository
Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.
Subjects – Topical (LCSH)
Killer whale--Behavior--Salish Sea (B.C. and Wash.); Underwater acoustic telemetry--Salish Sea (B.C. and Wash.); Underwater sound--Salish Sea (B.C. and Wash.); Killer whale--Food--Salish Sea (B.C. and Wash.)
Geographic Coverage
Salish Sea (B.C. and Wash.)
Rights
This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.
Type
Text
Language
English
Format
application/pdf
Multi-sensor archival tags on southern resident killer whales reveal patterns in kinematic behavior during subsurface foraging in the Salish Sea
Accumulating evidence suggests that Endangered southern resident killer whales may not be meeting their energetic requirements for body maintenance and growth, which can negatively affect survival and reproduction. A variety of factors are likely contributing to the decline in body condition and population size of southern residents, including disturbance from vessels and noise, which is known to interfere with foraging behavior. Between 2010-2014 we deployed 28 suction cup-attached digital acoustic recording tags (“DTAGs”) equipped with hydrophones, pressure sensors, and tri-axial accelerometers and magnetometers on southern residents as part of a study to investigate how underwater vessel noise impacts foraging behavior. Here, we present a fine-scale analysis of the kinematic behavior associated with subsurface foraging, which is a necessary precursor to understanding how vessel noise may be impairing successful foraging. First, we describe a method to identify subsurface prey capture events using kinematic data, and characterize the kinematic behavior associated with prey capture dives. Next, we show how foraging behavior differs between sexes. Finally, we discuss next steps to relate these findings to vessel noise impacts and implications for population recovery.