Senior Project Advisor
Kimihiro Noguchi, Ramadha Piyada Gamage
Document Type
Project
Publication Date
Spring 2022
Keywords
bootstrap, change point analysis, likelihood ratio test, nonparametric test
Abstract
Change point analysis is the process of determining changes to the mean of a sequence of independent observations. The goal is to determine the location of the change and how the change impacts the parameter in question. In this project, we applied the likelihood ratio test (LR) which uses a binary segmentation method to split the data at each change point. The data is iteratively split at each change point until every location of change is identified. The p-value is typically computed using the asymptotic distribution of the test statistic, however, it can be unreliable when the number of observations is too small. To improve our analysis of change points, we carried out a simulation study to analyze the empirical Type I error rate and the power of the LR test, using the parametric and nonparametric bootstrap. Under normal and exponential distributions it is found that the nonparametric bootstrap method makes the test reliable and robust for small, moderate, and large sample sizes. The improved bootstrap method is then applied to a real data set.
Department
Mathematics
Recommended Citation
Donovan, Lili, "Bootstrapping the Likelihood Ratio Test To Determine Change Points" (2022). WWU Honors College Senior Projects. 599.
https://cedar.wwu.edu/wwu_honors/599
Subjects - Topical (LCSH)
Bootstrap (Statistics)--Computer simulation
Genre/Form
essays
Type
Text
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf