The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.
Date Permissions Signed
2-13-2013
Date of Award
2013
Document Type
Masters Thesis
Degree Name
Master of Science (MS)
Department
Biology
First Advisor
Moyer, Craig L.
Second Advisor
Apple, Jude K.
Third Advisor
Schwarz, Dietmar, 1974-
Abstract
By the end of the 21st century, mean sea surface temperatures are expected to increase 4°C, while atmospheric CO2 concentrations are predicted to triple causing seawater to become more acidic. These compounding effects will undoubtedly have major consequences for the organisms and processes in the oceans. Bacterioplankton play a vital role in the marine carbon cycle and the oceans' ability to sequester CO2. We utilized pCO2 perturbation experiments to investigate the effects of elevated temperature and acidity on bacterioplankton community structure and metabolism. Terminalrestriction fragment length polymorphism (T-RFLP) revealed that bacterioplankton incubated in lower pH conditions exhibited a reduction of species richness, evenness, and overall diversity, relative to those incubated in ambient pH conditions. Non-metric multidimensional scaling (MDS) of T-RFLP data resulted in clustering by pH suggesting that pH influenced the structure of these communities. Shifts in the dominant members of bacterioplankton communities incubated under different pH were observed in both T-RFLP and clone library analyses. Both ambient and low pH communities were dominated by sequences of γ-proteobacteria and α-proteobacteria, although abundance of α-proteobacteria increased in communities incubated at lower pH. Although the representatives from these two classes were distinctly different between the treatments, a few taxa were found to be persistent in all treatments. Changes in the structure of bacterioplankton communities coincided with significant changes to their overall metabolism. Bacterial production rates decreased, while bacterial respiration increased under lower pH conditions. This study highlights the ability of bacterioplankton communities to respond to ocean acidification both structurally and metabolically, which may have significant implications for their ecological function in the marine carbon cycle and the ocean's response to global climate change.
Type
Text
DOI
https://doi.org/10.25710/kd7n-4062
Publisher
Western Washington University
OCLC Number
828734793
Subject – LCSH
Marine bacteria--Effect of high temperatures on; Marine bacteria--Metabolism--Effect of high temperatures on; Marine bacteria--Effect of water acidification on; Marine bacteria--Metabolism--Effect of water acidificaiton on; Marine microbial ecology
Format
application/pdf
Genre/Form
masters theses
Language
English
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.
Recommended Citation
Siu, Nam, "The effects of elevated temperature and ocean acidity on bacterioplankton community structure and metabolism" (2013). WWU Graduate School Collection. 263.
https://cedar.wwu.edu/wwuet/263