The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.
Date Permissions Signed
5-10-2013
Date of Award
2013
Document Type
Masters Thesis
Degree Name
Master of Science (MS)
Department
Environmental Studies
First Advisor
Medler, Michael J.
Second Advisor
Stueve, Kirk M.
Third Advisor
Wallin, David O.
Abstract
We evaluated several approaches for the automated detection and mapping of trees and treeline in an alpine environment. Using multiple remote sensing platforms and software programs, we evaluated both pixel-based and object-based classification approaches in combination with high-resolution multispectral imagery and LiDAR-derived tree height data. The study area in North Cascades National Park included over 10,000 hectares of some of the most rugged terrain in the conterminous U.S. Through the use of the Normalized Difference Vegetation Index (NDVI), differences in illumination conditions created by steep slopes and tall trees were minimized. Data fusion of the multispectral imagery, NDVI, and LiDAR-derived tree height data produced the highest percent accuracies using both the pixel-based (88.4%) and the object-based classifications (92.9%). These results demonstrate that either method will produce an acceptable level of accuracy, and that the availability of a near-infrared band to calculate NDVI is extremely important. The NDVI used in conjunction with the multispectral imagery helped to minimize issues with shadows caused by rugged terrain. Furthermore, LiDAR-derived tree heights were used to augment classification routines to achieve even greater accuracy; where shadows were too dark to produce meaningful NDVI values, the LiDAR-derived tree height data was instrumental in helping to distinguish trees from other land cover types. Both the pixel-based and the object-based approaches hold considerable promise for automated mapping and monitoring of the treeline ecotone; however, the pixel-based approach may be superior because it is more straightforward and easily replicable compared to the object-based approach. These treeline mapping efforts will enhance future ecological treeline research by producing more accurate detections of trees and estimations of treeline position, and will be instrumental in building time series of imagery for future scientists conducting change detection studies at treeline.
Type
Text
DOI
https://doi.org/10.25710/9zkh-h696
Publisher
Western Washington University
OCLC Number
844761394
Subject – LCSH
Timberline--Washington (State)--North Cascades National Park--Remote sensing; Forest mapping--Washington (State)--North Cascades National Park--Remote sensing; Digital mapping; Optical radar--Washington (State)--North Cascades National Park
Geographic Coverage
North Cascades National Park (Wash.)
Format
application/pdf
Genre/Form
masters theses
Language
English
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.
Recommended Citation
Winings, Cathi J. (Cathi Jones), "Mapping alpine treeline with high resolution imagery and LiDAR data in North Cascades National Park, Washington" (2013). WWU Graduate School Collection. 282.
https://cedar.wwu.edu/wwuet/282