The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.
Date Permissions Signed
7-27-2015
Date of Award
Summer 2015
Document Type
Masters Thesis
Degree Name
Master of Science (MS)
Department
Chemistry
First Advisor
Rider, David A. (Materials scientist)
Second Advisor
Bussell, Mark E.
Third Advisor
Gilbertson, John D.
Abstract
Synthetic methodologies that allow for intentionally designed structures PtxM100-x with a specified size, composition, and inter-particle spacing are key to advancing the field of energy-related catalysis. The synthesis of these catalytic nanostructures can be carried out using well-defined polymer frameworks that selectively retain catalyst precursors. Poly(vinylpyridine), (PVP) a polymer bearing pyridine residues is capable of metal-coordination or electrostatic association with metal anions in acidic media. In this work, we explore the synthesis of cross-linked PVP colloids and block copolymer templates capable of loading with catalyst precursors (ie: PtCl62-, AuCl4-, IrCl62-). PtxM100-x. Nanoparticles were produced in PVP frameworks by both photolytic and thermal reduction methods and were analyzed via atomic force microscopy (AFM), scanning transmission electron microscopy-energy dispersive x-ray spectroscopy (STEM-EDS). Thermogravimetric infrared spectroscopy (TGA-FTIR) was used to investigate thermal and chemical properties of the materials. Elemental compositions were determined by x-ray photoelectron spectroscopy (XPS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and electrochemical measurements for electrocatalytic oxidation of alcohols were examined using cyclic voltammetry (CV). Bimetallic nanoparticles of platinum-iridium (PtxIr100-x) were synthesized on electrodes and analytical substrates via block copolymer templates for the activity of formic acid oxidation.
Type
Text
DOI
https://doi.org/10.25710/w5qm-6a94
Publisher
Western Washington University
OCLC Number
915140770
Subject – LCSH
Nanoparticles--Synthesis; Vinylpyridine; Nanostructures; Electrocatalysis; Platinum
Format
application/pdf
Genre/Form
masters theses
Language
English
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.
Recommended Citation
Taylor, Audrey, "Poly(vinylpyridine) Nanostructures for Nanoparticle Synthesis and Energy-related Catalysis" (2015). WWU Graduate School Collection. 431.
https://cedar.wwu.edu/wwuet/431