The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.

Date Permissions Signed

5-24-2016

Date of Award

Spring 2016

Document Type

Masters Thesis

Degree Name

Master of Science (MS)

Department

Environmental Studies

First Advisor

Bach, Andrew J.

Second Advisor

Flower, Aquila

Third Advisor

Bunn, Rebecca

Abstract

This research describes stages of primary succession in the Easton glacial foreland on Mount Baker, Washington. The Easton foreland is an alpine landscape displaying the processes of primary succession from barren substrate to a developed forest within 1.95 kilometers and over a short geologic period of approximately one hundred years. Patterns of vegetation succession vary among forelands around the world. In the Easton foreland, vegetation development was measured by percent cover, richness, and species diversity. Environmental variables (distance from glacier (proxy for time), elevation, soil moisture, photosynthetic active radiation (PAR), slope, and aspect) were measured to determine factors influencing vegetation development during primary succession. The main finding from this study is that distance from the Easton glacier is the most significant variable influencing vegetation development, and that the relationship between vegetation cover and distance is non-linear. This indicates a rapid establishment initially after the glacier retreats and a gradual development from about 40-100 years. This suggests a chronosequence is sufficient for explaining vegetation development on a small temporal and spatial scale. Vegetation cover and richness increased through succession, with low values of vegetation richness compared to a neighboring foreland. Diversity remained consistent at a Shannon-Wiener Diversity index value of about 1. The other environmental variables played a smaller role in vegetation development. Only fifteen plant species were found with the most abundant species being: Lupinus polyphyllus, Luetkea pectinata, Tsuga mertensiana. Most notable was the early presence of Tsuga mertensiana saplings within 20 years of glacial retreat, suggesting a relationship to the more developed forest on the surrounding moraines that are likely providing a seed-bank for the valley. The findings of this study advance the small but growing field of Cascadian foreland studies and contributes valuable information to the discussion of alpine ecosystems responses under anthropogenic climate change.

Type

Text

DOI

https://doi.org/10.25710/wjqq-0659

Publisher

Western Washington University

OCLC Number

950524626

Subject – LCSH

Plant succession--Climatic factors--Washington (State)--Baker, Mount; Glaciers--Climatic factors--Washington (State)--Baker, Mount; Mountain ecology--Washington (State)--Baker, Mount

Geographic Coverage

Baker, Mount (Wash.)

Format

application/pdf

Genre/Form

masters theses

Language

English

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.

Share

COinS