The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.
Date Permissions Signed
12-7-2017
Date of Award
Fall 2017
Document Type
Masters Thesis
Degree Name
Master of Science (MS)
Department
Biology
First Advisor
Schwarz, Dietmar, 1974-
Second Advisor
Miner, Benjamin G., 1972-
Third Advisor
Peterson, Merrill A., 1965-
Fourth Advisor
Pollard, Dan A.
Abstract
Understanding drought adaptation in fruit-parasitic Rhagoletis flies is essential for evaluating the potential for eastward spread of the invasive apple maggot fly, R. pomonella, from coastal Washington into arid central Washington, which poses a threat to the largest crop of U.S. apples. A closely related native species, R. zephyria, provides an opportunity to study existing drought adaptation in the region as it is locally adapted to drought conditions in central Washington. Here, I aim to elucidate physiological mechanisms underlying desiccation resistance in R. pomonella and R. zephyria, as well as determine if the trait is plastic or canalized in R. zephyria. Pupal diapause could be an advantageous state under drought stress because metabolisms are suppressed, limiting active water loss. To test diapause regulation as a mechanism contributing to desiccation resistance, I observed the proportions of diapausers (vs. direct developers) under high (drought) and low (non-drought) vapor pressure deficits in three host races of invasive R. pomonella and two populations of native R. zephyria to determine if 1) there was past selection on diapause regulation that led to higher proportions of diapausers in drought resistant populations and 2) drought stress affected diapause regulation. R. zephyria lacked direct development completely so diapause regulation cannot account for greater desiccation resistance in populations from arid vs. humid regions in Washington. The proportions of diapausers in R. pomonella were greatest among black hawthorn infesting flies (high desiccation resistance) and similar between apple infesting flies (low desiccation resistance) and ornamental hawthorn infesting flies (intermediate desiccation resistance), and not affected by drought treatment, suggesting diapause regulation is not the primary mechanism contributing to desiccation resistance in the invasive species. Next, I conducted a differential gene expression experiment to explore additional mechanisms and to categorize canalized versus plastic transcriptional responses to drought stress. Gene expression in newly egressed R. zephyria larvae was largely canalized in drought resistant and susceptible populations, though drought resistant larvae responded more to low humidity conditions (relative to humid conditions) than drought susceptible larvae, suggesting that local drought adaptation in R. zephyria is impacted by a genotype x environment interaction. Annotation of differentially expressed genes suggest differences in cuticular hydrocarbon profiles could underlie variable desiccation resistance and highlighted potential differences in development speeds between populations. In conclusion, desiccation resistance in R. zephyria and R. pomonella is likely multi-faceted and the primary mechanism that accounts for variation in desiccation resistance among populations is yet to be identified. Furthermore, desiccation resistance appears to be adaptive to local climates in R. zephyria and potentially constrained by host related fitness tradeoffs in R. pomonella.
Type
Text
DOI
https://doi.org/10.25710/1p6s-h946
Publisher
Western Washington University
OCLC Number
1015251933
Subject – LCSH
Apple maggot--Effect of drought on--Washington (State); Fruit-flies--Larvae--Effect of drought on--Washington (State); Apple maggot--Adaptation--Washington (State); Fruit-flies--Larvae--Adaptation--Washington (State)
Geographic Coverage
Washington (State)
Format
application/pdf
Genre/Form
masters theses
Language
English
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.
Recommended Citation
Kohnert, Christa M. (Christa Marie), "Physiological Mechanisms of Desiccation Resistance in Fruit-Parasitic Rhagoletis Flies" (2017). WWU Graduate School Collection. 632.
https://cedar.wwu.edu/wwuet/632