The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.

Date Permissions Signed

2-15-2018

Date of Award

Fall 1980

Document Type

Masters Thesis

Degree Name

Master of Science (MS)

Department

Geology

First Advisor

Beck, Myrl E.

Second Advisor

Babcock, R. Scott (Randall Scott)

Third Advisor

Pevear, David R.

Abstract

Geologic mapping in the Black Hills area strongly suggests that the middle Eocene basalts of the Crescent Formation and over- lying upper Eocene and Oligocene sedimentary rocks constitute a structurally coherent terrane that is bounded by northeast- and northwest-trending faults. I interpret the Black Hills as a homocline which dips about 10° to 15° to the west. Units within the block are commonly cut by normal and reverse faults, but are not appreciably folded.

Major- and trace-element geochemical analyses indicate that the Black Hills suite is co-magmatic, and is composed of hyper- sthene-normative tholeiites which were apparently derived by plagioclase — clinopyroxene — olivine ± magnetite fractionation. The suite is petrochemically similar to basalts from the upper part of the Crescent Formation of the Olympic Peninsula, and the upper flows of the lower member of the Siletz River Volcanics of coastal Oregon. An island arc origin for the Black Hills rocks, and by analogy the Crescent basalts, is not supported by field and petrochemical evidence. Discriminant plots of incompatible element data for the Black Hills rocks indicate that the suite is nearly identical to tholeiites from an oceanic island (Hawaiian-type) setting, although the lavas approach mid-ocean ridge basalt compositions as well. These intermediate incompatible-element compositions of the Black Hills rocks, along with Sr isotopic ratios. resemble those of tholeiites from Iceland and Galapagos, both of which are oceanic islands that were erupted at, or close to, the ridge crest of an active oceanic spreading center. I suggest that the Black Hills lavas, and possibly the tholeiitic and overlying alkalic flows of Eocene age in the Oregon-Washington Coast Range, may reflect generation of the seamount chain on the crest or flanks of an active or fossil spreading center. The composition of the erupting lavas probably evolved toward progressive enrichment in certain incompatible elements (i.e. Ti, Zr, Y, Nb) as the chain moved away from the spreading center axis. The Coast Range oceanic island chain was subsequently sutured to the leading edge of North America by late Eocene to early Oligocene time.

Paleomagnetic study of 35 sites in the Black Hills and adjacent areas indicates that most of the lava flows have declinations of remanent magnetizations that are significantly more easterly-directed than expected for cratonic North America, both before and after application of tectonic corrections. Using the preferred procedure for tilt-correction, the mean Black Hills paleomagnetic direction is: Dec.= 16.3°, Inc.= 67.3°, ∝(95= 4.9°. A rotation of 25.9° ±15° clockwise since middle Eocene time is inferred from these data; there is no evidence of north-south translation. The Black Hills show significantly less clockwise rotation than coeval rocks in the Oregon Coast Range, such as the Siletz River Volcanics, Tyee-Flournoy sediments, and Tillamook Volcanic Series. Data from the Willapa Hills south of the study area confirm the differential rotations the Oregon and Washington coastal blocks.

The paleomagnetic results suggest that the entire Coast Range terrane, extending from the Olympic Peninsula to north of the Klamath Mountains, has not been a coherent terrane since middle Eocene time. A tectonic model more consistent with available paleomagnetic data involves accretion, and independent clockwise rotation of two or more Coast Range blocks, or "microplates", in response to oblique subduction of the Farallon plate beneath western North America during Paleogene time.

Type

Text

Keywords

Geologic mapping, Black Hills

DOI

https://doi.org/10.25710/ks8q-yd48

Publisher

Western Washington University

OCLC Number

1032336345

Subject – LCSH

Basalt--Washington (State)--Olympic Mountains; Geology--Washington (State)--Olympic Mountains; Petrology--Washington (State)--Olympic Mountains; Paleomagnetism--Washington (State)--Olympic Mountains; Geology, Stratigraphic--Eocene

Geographic Coverage

Olympic Mountains (Wash.)

Format

application/pdf

Genre/Form

masters theses

Language

English

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without the author's written permission.

Bedrock Geology of The Black Hills Area, Washington reduced 7272144.pdf (106 kB)
Bedrock Geology of the Black Hills area, Washington

Included in

Geology Commons

Share

COinS