The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.
Date Permissions Signed
8-13-2020
Date of Award
Summer 2020
Document Type
Masters Thesis
Department or Program Affiliation
Biology
Degree Name
Master of Science (MS)
Department
Biology
First Advisor
Dahlberg, Caroline Lund, 1978-
Second Advisor
Rose, Jacqueline K.
Third Advisor
Serrano-Moreno, Jose Ramon
Abstract
Neurons communicate with other cells to elicit outputs that include memory and movement. Cells, including neurons, create proteins every day for specific functions and in particular, neurons produce proteins that enable their communication. Proteins found in cellular membranes are synthesized at the endoplasmic reticulum (ER). However, up to 30% of new proteins are improperly folded and must be removed from the cell. A build-up of misfolded proteins can trigger the Unfolded Protein Response (UPR) which initiates other pathways of protein quality control and can determine the fate of a cell. ER-associated protein degradation (ERAD) is a ubiquitin-dependent process in eukaryotic cells that helps alleviate protein accumulation by breaking down misfolded proteins and targeting them to for degradation at the proteasome. The ERAD system is well described in yeast but is less well studied in multicellular systems. We used Caenorhabditis elegans (C. elegans) as a model organism to examine the trafficking of a single transmembrane protein through the ER under stressed conditions and as part of the ERAD pathway. The glutamate receptor, GLR-1, is a model membrane protein expressed in a subset of interneurons in C. elegans at the ventral nerve cord (VNC) to observe if GLR-1 is a candidate substrate for ERAD. Assessing GLR-1’s accumulation in the absence of ERAD E3 ubiquitin ligases in C. elegans can determine the protein’s regulation in ERAD. Three putative ERAD E3 ligases in C. elegans are: HRD-1, MARC-6, and HRDL-1. Previous results showed that deletion of most of the gene encoding HRDL-1, caused an increased accumulation of GLR-1::GFP in the VNC. HRDL-1 may have a role in regulating GLR-1 degradation at the ER and GLR-1 may be a candidate endogenous substrate for ERAD. In order to understand how ERAD effects GLR-1, we used a chemical stressor, tunicamycin, which blocks ER-dependent glycosylation and initiates the UPR. Tunicamycin treatment induces ER stress, which activates a UPR-reporter construct hsp-4p::GFP in C. elegans. The hsp4p::GFP reporter responds to tunicamycin at lower doses when animals harbor the mutation gene hrdl-1. We used quantitative fluorescence imaging and immunoblotting to determine whether the GLR-1::GFP accumulated due to underlying ER stress caused by the lack of HRDL-1. Contrary to previous results, we found no difference in fluorescently-tagged GLR-1 in the VNC in animals lacking hrdl-1, though overall levels of tagged GLR-1 were increased. GLR-1 with a point mutation that caused ER accumulation was not affected by the loss of hrdl-1. We propose that another ER E3 ligase may be involved in GLR-1’s regulation in the VNC that further investigation of cell bodies may uncover mechanisms of GLR-1 regulation at the ER.
Type
Text
Keywords
Glutamate, Endoplasmic reticulum, Caenorhabditis elegans, ubiquitin
Publisher
Western Washington University
OCLC Number
1190759509
Subject – LCSH
Glutamic acid--Receptors; Endoplasmic reticulum; Caenorhabditis elegans; Proteolysis
Format
application/pdf
Genre/Form
masters theses
Language
English
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Rights Statement
http://rightsstatements.org/vocab/InC/1.0/
Recommended Citation
Aguilera, Janie, "Regulation of Glutamate Receptor (GLR-1) Under Endoplasmic Reticulum Stress in Caenorhabditis elegans" (2020). WWU Graduate School Collection. 982.
https://cedar.wwu.edu/wwuet/982