Document Type

Contribution to Book

Publication Date

2018

Keywords

Paleomagnetism, Suplee-Izee, Blue Mountains Oregon

Abstract

An important element in reconstructions of the Cordilleran margin of North America includes longstanding debate regarding the timing and amount of rotation of the Blue Mountains in eastern Oregon, and the origin of geometric features such as the Columbia Embayment, which was a subject of some of Bill Dickinson’s early research. Suppositions of significant clockwise rotation of the Blue Mountains derived from Dickinson’s work were confirmed in the 1980s by paleomagnetic results from Late Jurassic–Early Cretaceous plutonic rocks, and secondary directions from Permian–Triassic units of the Wallowa–Seven Devils arc that indicate ~60° clockwise rotation of the Blue Mountains.

This study reports new paleomagnetic data from additional locations of these Late Jurassic–Early Cretaceous plutonic rocks, as well as Jurassic sedimentary rocks of the Suplee-Izee area. Samples from three sites from the Bald Mountain Batholith, two sites from small intrusive bodies near Ritter, Oregon, and six sites from the Wallowa Batholith have well-defined magnetization components essentially identical to those found by previous workers. The combined mean direction of both sets of data from these Late Jurassic to Early Cretaceous intrusive rocks is D = 30, I = 63, α95 = 6°.

Samples from Jurassic sedimentary rocks in the Suplee-Izee area include four sites of the Lonesome Formation, three sites of andesitic volcanics in the Snowshoe Formation, and three sites from the Trowbridge Formation. The Lonesome and Trowbridge samples all had very well-defined, two component magnetizations. The in-situ mean of the combined Lonesome and Trowbridge Formations is D = 28, I = 63, α95 = 15°. Upon tilt-correction, the site means of these units scatter and fail the paleomagnetic fold test in spectacular fashion. The similarity between the directions obtained from the remagnetized Jurassic rocks, and from the Late Jurassic to Early Cretaceous plutonic rocks suggests that a widespread remagnetization accompanied emplacement of the intrusives. Similar overprints are found in Permian and Triassic rocks of the Blue Mountains. Directions from 64 sites of these rocks yields a mean of D = 33°, I = 64°, k= 26, α95 = 3.7°. Comparing the directions with North America reference poles, a clockwise rotation of 60° ± 9° with translation of 1000 ± 500 km is found. Together with data from Cretaceous and Eocene rocks, clockwise rotation of the Blue Mountains has occurred throughout the past ca. 130 Ma, with long-term rotation rates of 0.4 to 1 °/Ma. Approximately 1000 km of northward translation also occurred during some of this time.

Publication Title

The Geological Society of America Special Paper 540

First Page

223

Last Page

233

DOI

10.1130/2018.2540(10)

Comments

This is The Geological Society of America Special Paper 540. It is a chapter in the book,Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson’s Career

Edited by Ingersoll, R.V., Lawton, T.F., and Graham, S.A.

Subjects - Topical (LCSH)

Geology, Stratigraphic--Mesozoic; Paleomagnetism--Blue Mountains (Or. and Wash.

Subjects - Names (LCNAF)

Dickinson, William R.

Geographic Coverage

Blue Mountains (Or. and Wash.)

Genre/Form

articles

Type

Text

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Language

English

Format

application/pdf

Share

COinS