Document Type
Article
Publication Date
2010
Keywords
Bilinear pseudodifferential operators, Bilinear Hörmander classes, Symbolic calculus, Calderón–Zygmund theory
Abstract
Bilinear pseudodifferential operators with symbols in the bilinear analog of all the Hörmander classes are considered and the possibility of a symbolic calculus for the transposes of the operators in such classes is investigated. Precise results about which classes are closed under transposition and can be characterized in terms of asymptotic expansions are presented. This work extends the results for more limited classes studied before in the literature and, hence, allows the use of the symbolic calculus (when it exists) as an alternative way to recover the boundedness on products of Lebesgue spaces for the classes that yield operators with bilinear Calderón–Zygmund kernels. Some boundedness properties for other classes with estimates in the form of Leibniz’ rule are presented as well.
Publication Title
Integral Equations and Operator Theory
Volume
67
Issue
3
First Page
341
Last Page
364
DOI
http://dx.doi.org/ 10.1007/s00020-010-1782-y
Required Publisher's Statement
© Springer International Publishing AG
The final publication is available at Springer via http://dx.doi.org/ 10.1007/s00020-010-1782-y
Recommended Citation
Bényi, Árpád; Maldonado, Diego; Naibo, Virginia; and Torres, Rodolfo H. (Rodolfo Humberto), "On the Hörmander Classes of Bilinear Pseudodifferential Operators" (2010). Mathematics Faculty Publications. 49.
https://cedar.wwu.edu/math_facpubs/49
Subjects - Topical (LCSH)
Pseudodifferential operators; Decomposition method; Calderón-Zygmund operator; Bilinear transformation method; Calculus
Genre/Form
articles
Type
Text
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf