Presentation Abstract
Recent attention has focused on exploring the carbon storage and sequestration values of tidal wetlands to mitigate greenhouse gas emissions. Efforts are now underway to develop the tools and refine the science needed to bring carbon markets to bear on tidal wetland restoration activities. Effective restoration not only maximizes carbon storage in former tidal wetlands but also, through the accumulation of organic and mineral matter, enhances these systems’ resilience to rising sea levels. To this end, this project focuses on the Snohomish River estuary of the Puget Sound, Washington, which offers a continuum of diked and un-diked wetlands including seasonal floodplains, open mudflats, mature and tidal forests, and salt marsh habitats. In addition, there is strong restoration potential in a suite of ongoing and proposed projects. We report here on the carbon storage pools, long-term sediment accretion rates (100 years), and estimated rates of carbon storage, derived from sediment cores collected at representative sites within the Snohomish estuary during the spring and summer of 2013. We found that natural wetlands (open to tidal exchange and riverine inputs) were accreting at rates that equaled or exceeded current rates of eustatic sea level rise, while formerly, or currently diked wetlands (closed to such exchanges and inputs) revealed marked evidence of subsidence. Restored sites showed evidence of both high rates of sediment accretion (1.61 cm/year) and carbon storage (352 g C/m2/year).
Session Title
Session S-03G: Ecosystem Services and Impacts of Sediment for Salish Sea Recovery
Conference Track
Shorelines
Conference Name
Salish Sea Ecosystem Conference (2014 : Seattle, Wash.)
Document Type
Event
Start Date
30-4-2014 3:30 PM
End Date
30-4-2014 5:00 PM
Location
Room 6E
Genre/Form
conference proceedings; presentations (communicative events)
Contributing Repository
Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.
Subjects – Topical (LCSH)
Wetland ecology--Washington (State)--Snohomish River Estuary; Carbon sequestration--Washington (State)--Snohomish River Estuary; Wetland restoration--Washington (State)--Snohomish River Estuary; Sea level--Climatic factors--Washington (State)--Snohomish River Estuary
Geographic Coverage
Salish Sea (B.C. and Wash.); Snohomish River Estuary (Wash.)
Rights
This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.
Type
Text
Language
English
Format
application/pdf
Included in
Three birds with one stone: Tidal wetland restoration, carbon sequestration, and enhancing resilience to rising sea levels in the Snohomish River Estuary, Washington
Room 6E
Recent attention has focused on exploring the carbon storage and sequestration values of tidal wetlands to mitigate greenhouse gas emissions. Efforts are now underway to develop the tools and refine the science needed to bring carbon markets to bear on tidal wetland restoration activities. Effective restoration not only maximizes carbon storage in former tidal wetlands but also, through the accumulation of organic and mineral matter, enhances these systems’ resilience to rising sea levels. To this end, this project focuses on the Snohomish River estuary of the Puget Sound, Washington, which offers a continuum of diked and un-diked wetlands including seasonal floodplains, open mudflats, mature and tidal forests, and salt marsh habitats. In addition, there is strong restoration potential in a suite of ongoing and proposed projects. We report here on the carbon storage pools, long-term sediment accretion rates (100 years), and estimated rates of carbon storage, derived from sediment cores collected at representative sites within the Snohomish estuary during the spring and summer of 2013. We found that natural wetlands (open to tidal exchange and riverine inputs) were accreting at rates that equaled or exceeded current rates of eustatic sea level rise, while formerly, or currently diked wetlands (closed to such exchanges and inputs) revealed marked evidence of subsidence. Restored sites showed evidence of both high rates of sediment accretion (1.61 cm/year) and carbon storage (352 g C/m2/year).