Presentation Abstract

Recent attention has focused on exploring the carbon storage and sequestration values of tidal wetlands to mitigate greenhouse gas emissions. Efforts are now underway to develop the tools and refine the science needed to bring carbon markets to bear on tidal wetland restoration activities. Effective restoration not only maximizes carbon storage in former tidal wetlands but also, through the accumulation of organic and mineral matter, enhances these systems’ resilience to rising sea levels. To this end, this project focuses on the Snohomish River estuary of the Puget Sound, Washington, which offers a continuum of diked and un-diked wetlands including seasonal floodplains, open mudflats, mature and tidal forests, and salt marsh habitats. In addition, there is strong restoration potential in a suite of ongoing and proposed projects. We report here on the carbon storage pools, long-term sediment accretion rates (100 years), and estimated rates of carbon storage, derived from sediment cores collected at representative sites within the Snohomish estuary during the spring and summer of 2013. We found that natural wetlands (open to tidal exchange and riverine inputs) were accreting at rates that equaled or exceeded current rates of eustatic sea level rise, while formerly, or currently diked wetlands (closed to such exchanges and inputs) revealed marked evidence of subsidence. Restored sites showed evidence of both high rates of sediment accretion (1.61 cm/year) and carbon storage (352 g C/m2/year).

Session Title

Session S-03G: Ecosystem Services and Impacts of Sediment for Salish Sea Recovery

Conference Track

Shorelines

Conference Name

Salish Sea Ecosystem Conference (2014 : Seattle, Wash.)

Document Type

Event

Start Date

30-4-2014 3:30 PM

End Date

30-4-2014 5:00 PM

Location

Room 6E

Genre/Form

conference proceedings; presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Wetland ecology--Washington (State)--Snohomish River Estuary; Carbon sequestration--Washington (State)--Snohomish River Estuary; Wetland restoration--Washington (State)--Snohomish River Estuary; Sea level--Climatic factors--Washington (State)--Snohomish River Estuary

Geographic Coverage

Salish Sea (B.C. and Wash.); Snohomish River Estuary (Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

Share

COinS
 
Apr 30th, 3:30 PM Apr 30th, 5:00 PM

Three birds with one stone: Tidal wetland restoration, carbon sequestration, and enhancing resilience to rising sea levels in the Snohomish River Estuary, Washington

Room 6E

Recent attention has focused on exploring the carbon storage and sequestration values of tidal wetlands to mitigate greenhouse gas emissions. Efforts are now underway to develop the tools and refine the science needed to bring carbon markets to bear on tidal wetland restoration activities. Effective restoration not only maximizes carbon storage in former tidal wetlands but also, through the accumulation of organic and mineral matter, enhances these systems’ resilience to rising sea levels. To this end, this project focuses on the Snohomish River estuary of the Puget Sound, Washington, which offers a continuum of diked and un-diked wetlands including seasonal floodplains, open mudflats, mature and tidal forests, and salt marsh habitats. In addition, there is strong restoration potential in a suite of ongoing and proposed projects. We report here on the carbon storage pools, long-term sediment accretion rates (100 years), and estimated rates of carbon storage, derived from sediment cores collected at representative sites within the Snohomish estuary during the spring and summer of 2013. We found that natural wetlands (open to tidal exchange and riverine inputs) were accreting at rates that equaled or exceeded current rates of eustatic sea level rise, while formerly, or currently diked wetlands (closed to such exchanges and inputs) revealed marked evidence of subsidence. Restored sites showed evidence of both high rates of sediment accretion (1.61 cm/year) and carbon storage (352 g C/m2/year).