The role of eelgrass in marine community interactions and ecosystem services: results from ecosystem-scale food web models
Presentation Abstract
Eelgrass beds provide valuable refuge, foraging, and spawning habitat for many marine species, including valued species such as Pacific salmon (Oncorhynchus spp.), Pacific herring (Clupea pallasi), and Dungeness crab (Metacarcinus magister). We used dynamic simulations in a food web model of central Puget Sound, Washington, developed in the Ecopath with Ecosim software, to examine how the marine community may respond to changes in coverage of native eelgrass (Zostera marina), and how these modeled responses can be assessed using an ecosystem services framework, expressing these services with economic currencies in some cases and biological proxies in others. Increased eelgrass coverage was most associated with increases in commercial and recreational fishing with some small decreases in one non-market activity, bird watching. When we considered ecosystem service categories that are aggregations of individual groups of species, we saw little evidence of strong tradeoffs among marine resources; that is, increasing eelgrass coverage was essentially either positive or neutral for all services we examined, although we did not examine terrestrial activities (e.g., land use) that affect eelgrass coverage. Within particular service categories, however, we found cases where the responses to changes in eelgrass of individual groups of species that provide the same type of ecosystem service differed both in the magnitude and direction of change. This emphasizes the care that should be taken in combining multiple examples of a particular type of ecosystem service into an aggregate measure of that service.
Session Title
Session S-03F: Tools for Assessment and Implementation
Conference Track
Planning Assessment & Communication
Conference Name
Salish Sea Ecosystem Conference (2014 : Seattle, Wash.)
Document Type
Event
Start Date
30-4-2014 3:30 PM
End Date
30-4-2014 5:00 PM
Location
Room 602-603
Genre/Form
conference proceedings; presentations (communicative events)
Contributing Repository
Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.
Subjects – Topical (LCSH)
Zostera marina--Washington (State)--Puget Sound; Biotic communities--Washington (State)--Puget Sound; Food chains (Ecology)--Washington (State)--Puget Sound; Marine ecology----Washington (State)--Puget Sound
Geographic Coverage
Salish Sea (B.C. and Wash.); Puget Sound (Wash.)
Rights
This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.
Type
Text
Language
English
Format
application/pdf
The role of eelgrass in marine community interactions and ecosystem services: results from ecosystem-scale food web models
Room 602-603
Eelgrass beds provide valuable refuge, foraging, and spawning habitat for many marine species, including valued species such as Pacific salmon (Oncorhynchus spp.), Pacific herring (Clupea pallasi), and Dungeness crab (Metacarcinus magister). We used dynamic simulations in a food web model of central Puget Sound, Washington, developed in the Ecopath with Ecosim software, to examine how the marine community may respond to changes in coverage of native eelgrass (Zostera marina), and how these modeled responses can be assessed using an ecosystem services framework, expressing these services with economic currencies in some cases and biological proxies in others. Increased eelgrass coverage was most associated with increases in commercial and recreational fishing with some small decreases in one non-market activity, bird watching. When we considered ecosystem service categories that are aggregations of individual groups of species, we saw little evidence of strong tradeoffs among marine resources; that is, increasing eelgrass coverage was essentially either positive or neutral for all services we examined, although we did not examine terrestrial activities (e.g., land use) that affect eelgrass coverage. Within particular service categories, however, we found cases where the responses to changes in eelgrass of individual groups of species that provide the same type of ecosystem service differed both in the magnitude and direction of change. This emphasizes the care that should be taken in combining multiple examples of a particular type of ecosystem service into an aggregate measure of that service.